If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-7x-15=62
We move all terms to the left:
2x^2-7x-15-(62)=0
We add all the numbers together, and all the variables
2x^2-7x-77=0
a = 2; b = -7; c = -77;
Δ = b2-4ac
Δ = -72-4·2·(-77)
Δ = 665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{665}}{2*2}=\frac{7-\sqrt{665}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{665}}{2*2}=\frac{7+\sqrt{665}}{4} $
| 3x+3(5x+6)=234 | | 9d-2(3d+1)=10d+7 | | (4x-13)3-4x=25 | | –2+2x=–16 | | (3x+9)+73=180 | | 250=20x+50 | | 7x-1+6=3x+3-5x | | 250x+2=1000 | | 3z+9+13z=4z+5 | | 25=4x-3(4x=13) | | (8x-5)=3x | | -5=4(j-16)-17 | | 7x+4(2x-14)=34 | | -d-5=3d=17 | | -21=6-8n+5 | | 4x+7=-3x+35 | | 125+(x+59)=180 | | 1-6x-4x=11 | | 5x+2(3x-19)=83 | | x-4=7-7 | | 6x+3(5x+5)=141 | | 18-x=-14 | | -6x-2+5=15 | | X+8y=180 | | 3x+3(7x-19)=63 | | 58x+1,942x-78=31(50x+41) | | 12=-x/5+9 | | 5a-7+7a+13=7a+4a | | /6x+11+5x+15=180 | | 6k+2-2=0 | | 3(2x-4)+3x=15 | | 4(2x+1)=76 |